1,592 research outputs found

    Black holes, parallelizable horizons and half-BPS states for the Einstein-Gauss-Bonnet theory in five dimensions

    Full text link
    Exact vacuum solutions with a nontrivial torsion for the Einstein-Gauss-Bonnet theory in five dimensions are constructed. We consider a class of static metrics whose spacelike section is a warped product of the real line with a nontrivial base manifold endowed with a fully antisymmetric torsion. It is shown requiring solutions of this sort to exist, fixes the Gauss-Bonnet coupling such that the Lagrangian can be written as a Chern-Simons form. The metric describes black holes with an arbitrary, but fixed, base manifold. It is shown that requiring its ground state to possess unbroken supersymmetries, fixes the base manifold to be locally a parallelized three-sphere. The ground state turns out to be half-BPS, which could not be achieved in the absence of torsion in vacuum. The Killing spinors are explicitly found.Comment: 11 pages, no figures, notation clarified; version accepted for publication in Physical Review

    Higher Dimensional Gravity, Propagating Torsion and AdS Gauge Invariance

    Full text link
    The most general theory of gravity in d-dimensions which leads to second order field equations for the metric has [(d-1)/2] free parameters. It is shown that requiring the theory to have the maximum possible number of degrees of freedom, fixes these parameters in terms of the gravitational and the cosmological constants. In odd dimensions, the Lagrangian is a Chern-Simons form for the (A)dS or Poincare groups. In even dimensions, the action has a Born-Infeld-like form. Torsion may occur explicitly in the Lagrangian in the parity-odd sector and the torsional pieces respect local (A)dS symmetry for d=4k-1 only. These torsional Lagrangians are related to the Chern-Pontryagin characters for the (A)dS group. The additional coefficients in front of these new terms in the Lagrangian are shown to be quantized.Comment: 10 pages, two columns, no figures, title changed in journal, final version to appear in Class. Quant. Gra

    Exact solutions for the Einstein-Gauss-Bonnet theory in five dimensions: Black holes, wormholes and spacetime horns

    Full text link
    An exhaustive classification of certain class of static solutions for the five-dimensional Einstein-Gauss-Bonnet theory in vacuum is presented. The class of metrics under consideration is such that the spacelike section is a warped product of the real line with a nontrivial base manifold. It is shown that for generic values of the coupling constants the base manifold must be necessarily of constant curvature, and the solution reduces to the topological extension of the Boulware-Deser metric. It is also shown that the base manifold admits a wider class of geometries for the special case when the Gauss-Bonnet coupling is properly tuned in terms of the cosmological and Newton constants. This freedom in the metric at the boundary, which determines the base manifold, allows the existence of three main branches of geometries in the bulk. For negative cosmological constant, if the boundary metric is such that the base manifold is arbitrary, but fixed, the solution describes black holes whose horizon geometry inherits the metric of the base manifold. If the base manifold possesses a negative constant Ricci scalar, two different kinds of wormholes in vacuum are obtained. For base manifolds with vanishing Ricci scalar, a different class of solutions appears resembling "spacetime horns". There is also a special case for which, if the base manifold is of constant curvature, due to certain class of degeneration of the field equations, the metric admits an arbitrary redshift function. For wormholes and spacetime horns, there are regions for which the gravitational and centrifugal forces point towards the same direction. All these solutions have finite Euclidean action, which reduces to the free energy in the case of black holes, and vanishes in the other cases. Their mass is also obtained from a surface integral.Comment: 31 pages, 1 figure, minor changes and references added. Final version to be published in PR

    TASP: Towards anonymity sets that persist

    Get PDF
    Anonymous communication systems are vulnerable to long term passive "intersection attacks". Not all users of an anonymous communication system will be online at the same time, this leaks some information about who is talking to who. A global passive adversary observing all communications can learn the set of potential recipients of a message with more and more confidence over time. Nearly all deployed anonymous communication tools offer no protection against such attacks. In this work, we introduce TASP, a protocol used by an anonymous communication system that mitigates intersection attacks by intelligently grouping clients together into anonymity sets. We find that with a bandwidth overhead of just 8% we can dramatically extend the time necessary to perform a successful intersection attack
    • …
    corecore